

SOIL AND ECOLOGICAL FINDINGS IN THE CENTRAL APPALACHIAN RED SPRUCE ECOSYSTEM

S.J. Connolly, USFS and J.A. Thompson, WVU

WV Soils Partnership

Red Spruce Ecosystem

Soils and vegetation community have co-evolved

Red Spruce Ecosystem

- Recent observations in the Allegheny Highlands of West Virginia indicated greater distribution of spodic soil properties than was shown in existing inventories
- Soil survey can be employed to improve land management tools
 - soil maps
 - ecological site descriptions

Soil and Ecological Findings

- Ecological Sites, Ecological Site Descriptions (ESD), and the Role of Soil Survey
- Development of ESD for High Elevation Red Spruce Ecosystems in Central Appalachia
- 3. Using ESD to Guide Landscape Level Forest Management

Soil and Ecological Findings

- Ecological Sites, Ecological Site Descriptions (ESD), and the Role of Soil Survey
- Development of ESD for High Elevation Red Spruce Ecosystems in Central Appalachia
- 3. Using ESD to Guide Landscape Level Forest Management

Ecological Sites

Definition (NRCS, 1997)

"A distinctive kind of land with specific physical characteristics that differ from other kinds of land in its ability to produce a distinctive kind and amount of vegetation."

Emphasis

"Interactions among soils, vegetation, and land management"

Ecological Sites

- Land with similar potential and response to management
 - Shared characteristics of climate, soils, and landscape

Correlated with one or more component soil types

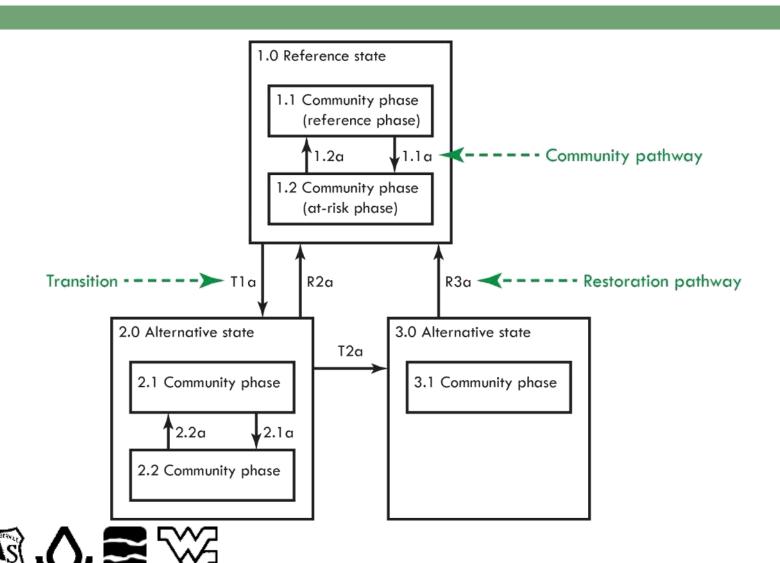
Ecological Sites

Purpose

- Separate landscape by ecological potential
- Specify constraints for desired transitions
- Assess risk of degradation
- Identify specific intervention strategies
- Aid in monitoring design

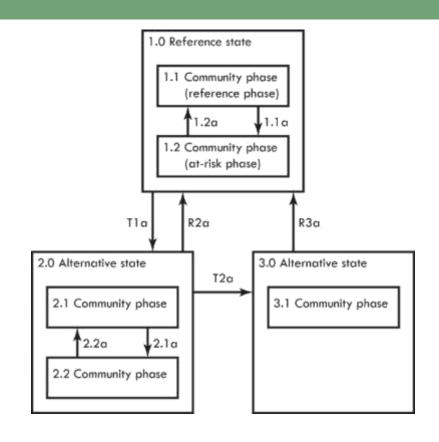
Ecological Site Descriptions (ESD)

- □ Site characteristics
 - Physiographic, climate, soil, and water features
- Plant communities
 - Ecological dynamics, species, state-and-transition model
- □ Site interpretations
 - Management recommendations
 - Animal community, recreational uses, wood products
- Supporting information
 - Relevant literature, information and data sources



State-and-Transition Models (STM)

- □ State = Particular plant community
 - Includes reference state and alternative states
 - Can have multiple communities within state
- □ Transitions = Particular succession pathway
 - Changes from one state to another
- Experimental data, historical accounts, and local knowledge informs STM


State-and-Transition Models (STM)

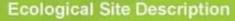
State-and-Transition Models (STM)

Provides framework to

- Identify current state
- Identify sites at risk of crossing a threshold
- Predict response to management actions
- Develop management plans

Soil and Ecological Findings

- Ecological Sites, Ecological Site Descriptions (ESD), and the Role of Soil Survey
- 2. Development of ESD for High Elevation Red Spruce Ecosystems in Central Appalachia
- 3. Using ESD to Guide Landscape Level Forest Management



HEVIEW COR

United States Department of Agriculture

Spodic Intergrade Shale Upland Hardwood and Conifer Forest

Site ID: F127XY002WV

Helping People Help the Land

REVIEW CORY

United States Department of Agriculture

Ecological Site Description

Spodic Shale Upland Conifer Forest

Major Land Resource Area 127 Eastern Allegheny Plateau and Mountains

Site ID: F127XY001WV

This ESD document was developed by the Natural Resources Conservation Service in cooperation with the U.S. Forest Service.

Soil Science Division

Natural Resources Conservation Service

THE RESIDENCE

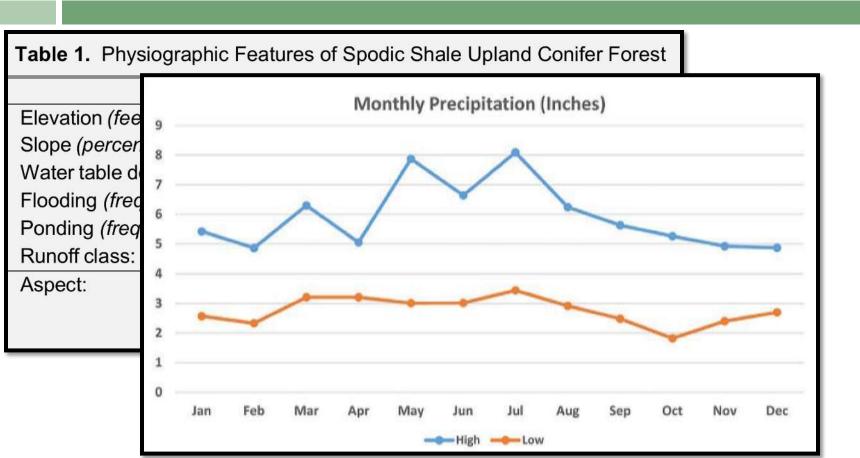
Helping People Help the Land

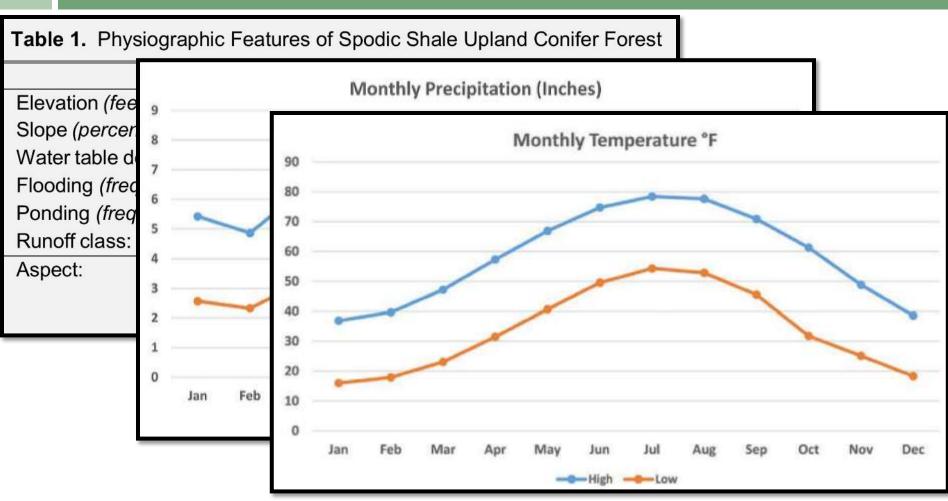
Ecological Site Identification

- Site Stage: Approved
- Site name: Spodic Shale Upland Conifer Forest
 Picea rubens Tsuga canadensis / Dryopteris intermedia (red spruce eastern hemlock / intermediate woodfern)
- Site type: Forestland
- Site ID: F127XY001WV
- Major land resource area (MLRA): 127—Eastern Allegheny Plateau and Mountains

Introduction

The Spodic Shale Upland Conifer Forest ecological site occupies the Allegheny Mountain Section of the Appalachian Highlands. The deeply dissected plateau in this area terminates in a high escarpment, the Allegheny Front, in the eastern part of the area. Steep slopes are dominant, but level to gently rolling plateau remnants occur in the northern part of the area. The area is dominantly forestland containing large blocks of state forest and game lands and national forests. Less than one-tenth of the major land resource area (MLRA) consists of urban areas.


Table 1. Physiographic Features of Spodic Shale Upland Conifer Forest		
	Minimum	Maximum
Elevation (feet):	2,631	4,583
Slope (percent):	3	80
Water table depth (inches):	60	60
Flooding (frequency):	None	None
Ponding (frequency):	None	None
Runoff class:	Low	High
Aspect:	North	
	East	
	West	



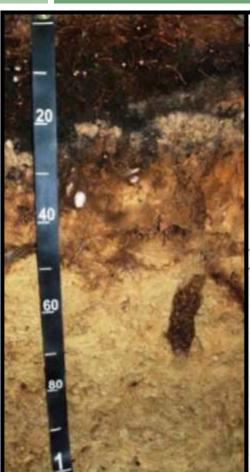


Table 4. Representative Soil Features

Parent Materials

Kind: Cryoturbate, Colluvium, Solifluction deposits

Origin: Acid shale, Sandstone and shale, Sandstone and siltstone

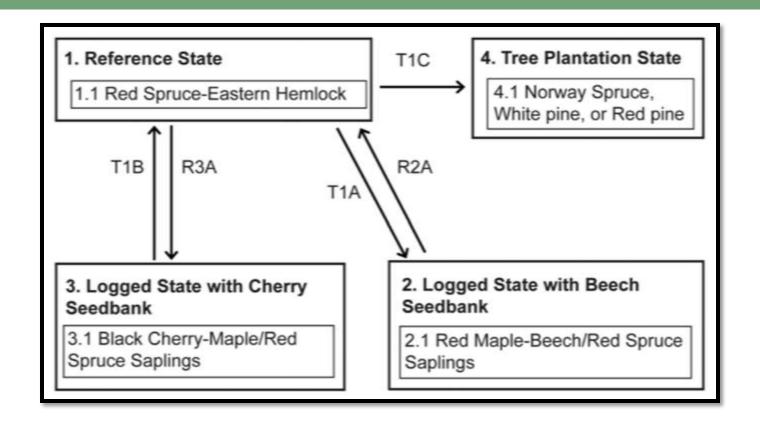
Surface Texture (1) Channery Silt loam

(2) Very channery Loam

(3) Extremely channery Loam

Subsurface Texture Group Loamy

	Minimum	Maximum
Surface fragments <=3" (% cover):	0	5
Surface fragments >3" (% cover):	0	3
Subsurface fragments <=3" (% volume):	15	60
Subsurface fragments >3" (% volume):	5	40
Drainage class:	Well drained	Well drained
Permeability class:	Moderate	Moderately rapid
Depth (inches):	20	60
Available water capacity (inches):	2.00	5.10
Electrical conductivity (mmhos/cm):	0	0
Sodium adsorption ratio:	0	0
Calcium carbonate equivalent (percent):	0	0
Soil reaction (1:1 water):	3.3	4.8


common name Scientific name	Symbol	Nativity	Canopy cover (%)		Canopy height (ft.)		Tree diameter (in.)		Basal area (ft.² per acre)	
			low	high	bottom	top	low	high	low	high
red maple Acer rubrum	ACRU	N	10.0	30.0	60.0	115.0	7.0	10.0	10.0	30.0
red spruce Picea rubens	PIRU	N	30.0	75.0	80.0	110.0	14.0	17.0	40.0	60.0
Eastern hemlock Tsuga canadensis	TSCA	N	10.0	50.0	35.0	110.0	14.0	18.0	20.0	60.0
red spruce Picea rubens	PIRU	N	50.0	75.0	65.0	100.0	_	_	-	_
black cherry Prunus serotina	PRSE2	N	0.0	10.0	70.0	100.0	12.0	16.0	0.0	10.0
yellow birch Betula alleghaniensis	BELE2	N	0.0	10.0	50.0	75.0	7.0	9.0	0.0	10.0
sweet birch Betula lenta	BELE	N	0.0	10.0	50.0	75.0	_	_	_	_
eastern hemlock Tsuga canadensis	TSCA	N	0.0	20.0	15.0	75.0	_	_	_	_
cucumber tree Magnolia acuminata	MAAC	Ν	0.0	10.0	50.0	65.0	-	-	-	-
Mountain magnolia Magnolia fraseri	MAFR	N	0.0	10.0	45.0	60.0	_	_	-	_
eastern hemlock Tsuga canadensis	TSCA	N	0.0	5.0	5.0	20.0	_	_	_	_

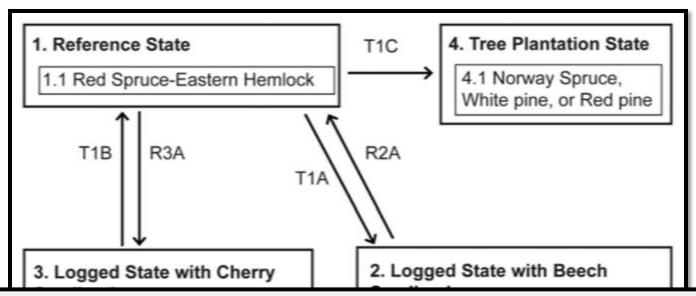


Table 5. State-and-Transition Diagram Legend					
Code	Agent/Event/Activity/Process				
T1A	Logged state with beech seedbank				
T1B	Logged state with cherry seedbank				
T1C	Tree plantation state				
R2A	Thin hardwoods (cutting, ringing or herbicide application or both) to release spruce				
R3A	Thin hardwoods (cutting, ringing or herbicide application or both) to release spruce				

Spodic Integrade Shale Upland Hardwood and Conifer Forest

Table 4. Representative Soil Features

Parent Materials

Kind: Residuum, Colluvium, Solifluction deposits

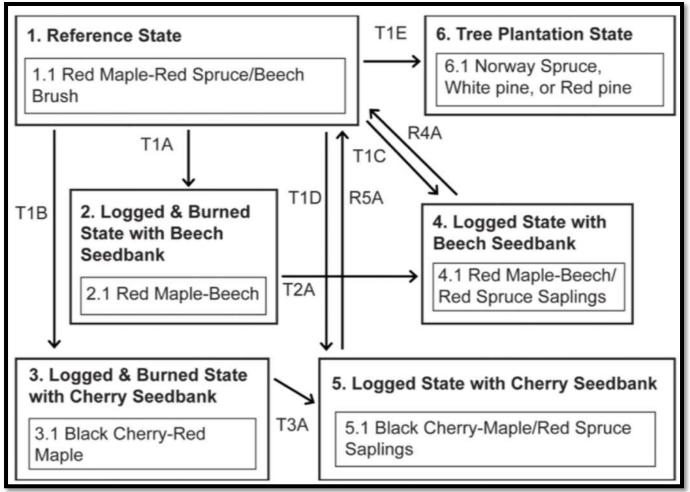
Origin: Acid shale, Sandstone and shale, Sandstone and siltstone

Surface Texture (1) Channery Silt loam

(2) Very channery Loam

Subsurface Texture Group Loamy

	Minimum	Maximum
Surface fragments <=3" (% cover):	0	5
Surface fragments >3" (% cover):	0	3
Subsurface fragments <=3" (% volume):	15	60
Subsurface fragments >3" (% volume):	5	40
Drainage class:	Well drained	Well drained
Permeability class:	Moderate	Moderate
Depth (inches):	20	60
Available water capacity (inches):	2.10	5.25
Electrical conductivity (mmhos/cm):	0	0
Sodium adsorption ratio:	0	0
Calcium carbonate equivalent (percent):	0	0
Soil reaction (1:1 water):	4.0	5.0



Spodic Integrade Shale Upland Hardwood and Conifer Forest

Spodic Integrade Shale Upland Hardwood and Conifer Forest

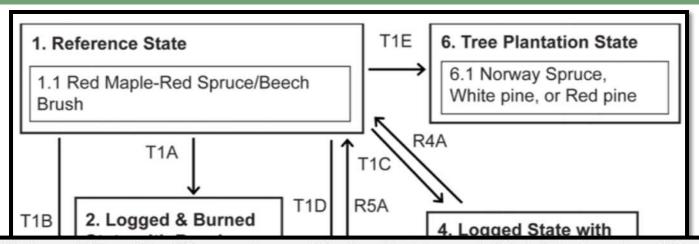


Table 5. State-and-Transition Diagram Legend for Spodic Intergrade Shale Hardwood and Conifer Forest

Code	Agent/Event/Activity/Process
T1A	Logged and burned with beech seedbank
T1B	Logged and burned with cherry seedbank
T1C	Logged with beech seedbank
T1D	Logged with cherry seedbank
T1E	Tree plantation
T2A	Red spruce seedling establish
T3A	Red Spruce seedling establish
R4A	Thin hardwoods (cutting, ringing and/or herbicide application) to release spruce
R5A	Thin hardwoods (cutting, ringing and/or herbicide application) to release spruce

Soil and Ecological Findings

- Ecological Sites, Ecological Site Descriptions (ESD), and the Role of Soil Survey
- Development of ESD for High Elevation Red Spruce Ecosystems in Central Appalachia
- Using ESD to Guide Landscape Level Forest Management

Why Promote and Restore High Elevation Red Spruce Forests from a Soil Landscape View?

Habitat restoration

Habitat Restoration

Why Promote and Restore High Elevation Red Spruce Forests from a Soil Landscape View?

- Habitat restoration
- □ Carbon management

Carbon Management

 More carbon in the soils than in the atmosphere and vegetation combined

- Type of forest controls the amount of carbon in the underlying soil
 - Folistic epipedons and spodic horizons

Carbon Management

- Conversion of the historic red spruce forest to hardwoods resulted in large release of carbon
 - Restoring red spruce can help return much of the lost carbon in less than 100 years

Why Promote and Restore High Elevation Red Spruce Forests from a Soil Landscape View?

- Habitat restoration
- □ Carbon management
- □ Water storage

Headwater Systems

- Red spruce ESD located at headwaters where water is stored and collected
- Soils and vegetation play important role in water storage and filtration
- Ecosystem service for downstream users

Why Promote and Restore High Elevation Red Spruce Forests from a Soil Landscape View?

- Habitat restoration
- Carbon management
- □ Water storage
- Nutrient cycling
- Ecosystem health, biodiversity,
 and resilience

ESD in the Planning Process

- Assess current state of ecosystem
 - Trajectory vegetative community will follow given management actions
- Identify areas of connectivity and fragmentation
- Prioritize project areas based on available, limited resources (funding, staffing, etc.)

ESD During Project Planning

- Sharp Knob Project Area
- □ High elevation (>3000 ft)
- □ Pre-SMCRA coal mine
- □ Restoration work a priority
- Use ESD to find areas to target red spruce restoration

How to Restore Soils Based on ESD

- □ Refer to reference conditions
- □ Assess current soil conditions
- Develop management
 strategies that will move the landscape in the direction of recovery

Who is Using the Red Spruce ESD

- □ US Forest Service
- □ NRCS
 - Forest Stewardship Planning
 - EQIP (Environmental Quality Improvement Program)
- □ The Nature Conservancy
- US Fish and Wildlife Service
- National Park Service
- Research
- Other partners...

